Assessment of Hypoxia Inducible Factor Levels in Cancer Cell Lines upon Hypoxic Induction Using a Novel Reporter Construct
نویسندگان
چکیده
Hypoxia Inducible Factor (HIF) signaling pathway is important for tumor cells with limited oxygen supplies, as it is shown to be involved in the process of proliferation and angiogenesis. Given its pivotal role in cancer biology, robust assays for tracking changes in HIF expression are necessary for understanding its regulation in cancer as well as developing therapies that target HIF signaling. Here we report a novel HIF reporter construct containing tandem repeats of minimum HIF binding sites upstream of eYFP coding sequence. We show that the reporter construct has an excellent signal to background ratio and the reporter activity is HIF dependent and directly correlates with HIF protein levels. By utilizing this new construct, we assayed HIF activity levels in different cancer cell lines cultured in various degrees of hypoxia. This analysis reveals a surprising cancer cell line specific variation of HIF activity in the same level of hypoxia. We further show that in two cervical cancer cell lines, ME180 and HeLa, the different HIF activity levels observed correlate with the levels of hsp90, a cofactor that protects HIF against VHL-independent degradation. This novel HIF reporter construct serves as a tool to rapidly define HIF activity levels and therefore the therapeutic capacity of potential HIF repressors in individual cancers.
منابع مشابه
Identification of novel small-molecule inhibitors of hypoxia-inducible factor-1 transactivation and DNA binding.
Hypoxia-inducible factor-alpha (Hif-alpha) plays an important role in tumor growth by increasing resistance to apoptosis and the production of angiogenic factors, such as vascular endothelial growth factor (VEGF). Therefore, Hif-alpha is an attractive target for development of novel cancer therapeutics. We have generated Chinese hamster ovary cells, which stably express luciferase reporter cons...
متن کاملHypoxic gene activation by lipopolysaccharide in macrophages: implication of hypoxia-inducible factor 1
Hypoxia-inducible factor 1 (HIF-1) regulates many genes induced by low oxygen conditions. The expression of important hypoxic genes such as glucose transporter 1 and vascular endothelial growth factor are increased in macrophages during wound healing and in the presence of the endotoxin, lipopolysaccharide (LPS). Recent studies have demonstrated that nonhypoxic stimuli can also activate HIF-1 i...
متن کاملSilver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis
Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that is activated upon exposure to hypoxic stress. It modulates a number of cellular responses including proliferation, apoptosis, angiogenesis, and metabolism by activating a panel of target genes in response to hypoxia. The HIF-1 level is often upregulated in the hypoxic microenvironment of solid tumors, which contributes to cancer ...
متن کاملHypoxic gene activation by lipopolysaccharide in macrophages: implication of hypoxia-inducible factor 1alpha.
Hypoxia-inducible factor 1 (HIF-1) regulates many genes induced by low oxygen conditions. The expression of important hypoxic genes such as glucose transporter 1 and vascular endothelial growth factor are increased in macrophages during wound healing and in the presence of the endotoxin, lipopolysaccharide (LPS). Recent studies have demonstrated that nonhypoxic stimuli can also activate HIF-1 i...
متن کاملBlockade of Hypoxia: The Impact on Tumor Growth in an Experimental Tumor Model
Background: Tumor microenvironment is an active factor participating in immunoregulation, thereby preventing immunosurveillance and limiting the efficacy of anticancer therapies. Hypoxia as a major characteristic of solid tumors causes the expression of Hypoxia-Inducible Factor-1α (HIF-1α). This is a transcription factor that mediates hypoxic responses of tumor cells and involves in the express...
متن کامل